Likelihood Inferencein the Errors - in - Variables Modelby

نویسندگان

  • S. A. MURPHY
  • A. W. VAN DER VAART
چکیده

We consider estimation and conndence regions for the parameters and based on the observations is known up to a constant. We study the asymptotic performance of the estimators deened as the maximum likelihood estimator under the assumption that Z 1 ; : : :; Z n is a random sample from a completely unknown distribution. These estimators are shown to be asymptotically eecient in the semi-parametric sense if this assumption is valid. These estimators are shown to be asymptotically normal even in the case that Z 1 ; Z 2 ; : : : are arbitrary constants satisfying a moment condition. Similarly we study the conndence regions obtained from the likelihood ratio statistic for the mixture model and show that these are asymptotically consistent both in the mixture case and in the case that Z 1 ; Z 2 ; : : : are arbitrary constants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

میزان، نوع و عوامل مؤثر بر خطاهای دارویی از منظر پرستاران شاغل در بخش‌های مراقبت ویژه و اورژانس بیمارستان‌های آموزشی دانشگاه علوم پزشکی شهرکرد

Introduction: Considering the increasing number of drug errors, this study was conducted to investigate the factors affecting drug errors from nurses' point of view in ICU and Emergency Unite in educational hospitals of Shahrekord University of Medical Sciences in 2016. Methods: The present study is a descriptive study on 221 nurses working in Shahrekord hospitals. The data gathering tool was ...

متن کامل

Evaluating and managing the probability of medical errors in nursing personnel using the HEART method

Introduction: Medical errors cause serious and often preventable injuries to patients. Studying human errors and their use as an opportunity for learning is a key factor in the effort to improve patient safety and quality of care in the hospitals. The purpose of this study was to identify and evaluate human errors to reduce their risks in nursing personnel using the Human Error Evaluation and R...

متن کامل

Comparison of time domain maximum likelihood method and sample maximum likelihood method in errors-in-variables identification

The time domain maximum likelihood (TML) method and the Sample Maximum Likelihood (SML) method are two general approaches for identifying errors-in-variables models. In the TML method, an important assumption is that the noise-free input signal must be a stationary process with rational spectrum. For SML, the noise-free input needs to be periodic. In this report, numerical comparisons of these ...

متن کامل

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

Empirical Likelihood Confidence Region for Parameters in Semi-linear Errors-in-Variables Models

This paper proposes a constrained empirical likelihood confidence region for a parameter in the semi-linear errors-in-variables model. The confidence region is constructed by combining the score function corresponding to the squared orthogonal distance with a constraint on the parameter, and it overcomes that the solution of limiting mean estimation equations is not unique. It is shown that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996